Expression and regulation of endothelial nitric oxide synthase by vascular endothelial growth factor in ECV 304 cells.

نویسندگان

  • Jong Seon Park
  • Gu Ru Hong
  • Suk Whan Baek
  • Dong Gu Shin
  • Young Jo Kim
  • Bong Sup Shim
چکیده

Nitric oxide (NO) seems to play a pivotal role in the vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation. This study was designed to investigate the role and intracellular signal pathway of endothelial nitric oxide synthase (eNOS) activation induced by VEGF. ECV 304 cells were treated with VEGF(165) and then cell proliferation, eNOS protein and mRNA expression levels were analyzed to elucidate the functional role of eNOS in cell proliferation induced by VEGF. After exposure of cells to VEGF(165), eNOS activity and cell growth were increased by approximately two-fold in the VEGF(165) -treated cells compared to the untreated cells. In addition, VEGF stimulated eNOS expression at both the mRNA and protein levels in a dose-dependent manner. Phosphatidylinositol-3 kinase (PI-3K) inhibitors were used to assess PI-3K involvement in eNOS regulation. LY294002 was found to attenuate VEGF-stimulated eNOS expression. Wortmannin was not as effective as LY294002, but the reduction effect was detectable. Cells activated by VEGF showed increased ERK1/2 levels. Moreover, the VEGF-induced eNOS expression was reduced by the PD98059, MAPK pathway inhibitor. This suggests that eNOS expression might be regulated by PI-3K and the ERK1/2 signaling pathway. In conclusion, VEGF(165) induces ECV 304 cell proliferation via the NO produced by eNOS. In addition, eNOS may be regulated by the PI-3K or mitogen-activated protein kinase pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Korean Medical Science

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2002